
Walt Disney World Swan and Dolphin Resort
Orlando, Florida

11/28/2005 - 5:00 pm - 6:30 pm Room:Swan 9/10 (Swan)

Taking a Look at the Sheet Set Object.

In this course, you will get an understanding of how to access and manipulate sheet sets through the
Sheet Set object. This is a great way to write automation for the creation of custom properties or even
a sheet set itself. We will explore the many different levels of the Sheet Set object and shows you how
to respond to some of the events that are triggered. Sheet sets are a relatively new concept and there
are many ways to integrate the process into your company's workflow. By being able to access a
sheet set this way, you'll have an additional and effective way to control your company's standards.

CP15-1

About the Speaker:

Lee Ambrosius - HyperPics, LLC

Lee has been an AutoCAD user for over 10 years in the fields of architecture, facilities management,
and mechanical. He has been teaching AutoCAD users for 5+ years at both the corporate and college
level. He is best known for his expertise in programming and customizing AutoCAD-based products,
and has 8+ years of experience programming with AutoLISP, VBA, .NET, and ObjectARX. Lee writes
the "Customization Corner" column for AUGI, and other articles for Autodesk on customization.
lee_ambrosius@hyperpics.com

 CP15-1: Taking a Look at the Sheet Set Object

 2

Creating a reference to the Sheet Set Object

The Sheet Set Object allows you to access the contents of a Sheet Set (DST) file and not the Sheet Set Manager UI. This
allows you to create new Sheet Set files, as well as the ability to modify existing Sheet Set files. By being able to access the
Sheet Set files this way, you can write custom automation that gives you more flexibility than just creating a new Sheet Set
based on an existing one.

The first thing that you need to know is how to reference the AcSmComponents library. The library is limited to early binding,
and this limits you to using a programming other than AutoLISP/Visual LISP. This means that you will need to know how to use
the VBA editor or another programming language such as VB or VB.NET. The primary focus of this course will be around using
VBA from inside of AutoCAD because no additional tools need to be purchased.

Once you have created a reference to the library you need to add the necessary code to reference the Sheet Set Manager
Object. The Sheet Set Manager Object is represented by the object AcSmSheetSetMgr. The code below demonstrates how to
reference the Sheet Set Manager Object:

'' Create a Reference to a Sheet Set Manager Object
Dim oSheetSetMgr As AcSmSheetSetMgr

 Set oSheetSetMgr = New AcSmSheetSetMgr

Taking a look at the Sheet Set Manager Object

Once you have created a reference to the Sheet Set Manager Object you can then access any of the open Sheet Set files,
create a new Sheet Set file or open your own Sheet Set file. Below are a few of the useful methods that are part of the Sheet
Set Manager Object.

OpenDatabase – Allows you to open an existing sheet set file.

'' Open a Sheet Set
Public Sub OpenSheetSet()
 '' Create a Reference to the Sheet Set Manager Object
 Dim oSheetSetMgr As AcSmSheetSetMgr
 Set oSheetSetMgr = New AcSmSheetSetMgr

 '' Open a Sheet Set file
 Dim oSheetDb As AcSmDatabase
 Set oSheetDb = oSheetSetMgr.OpenDatabase("C:\Program Files\AutoCAD 2006\Sample\Sheet

Sets\Architectural\IRD Addition.dst", False)

 '' Return the Sheet Set Name and Description
 MsgBox "Sheet Set Name: " & oSheetDb.GetSheetSet.GetName & vbCrLf + _
 "Sheet Set Description: " & oSheetDb.GetSheetSet.GetDesc

 '' Close the Sheet Set
 oSheetSetMgr.Close oSheetDb
End Sub

 CP15-1: Taking a Look at the Sheet Set Object

 3

GetDatabaseEnumerator – Allows you to step through all the open sheet set files.

'' Step through all Open Sheet Sets
Public Sub StepThroughTheSheetSetManager()
 Dim oEnumDb As IAcSmEnumDatabase
 Dim oItem As IAcSmPersist

 '' Create a Reference to the Sheet Set Manager Object
 Dim oSheetSetMgr As AcSmSheetSetMgr
 Set oSheetSetMgr = New AcSmSheetSetMgr

 '' Get Loaded Databases
 Set oEnumDb = oSheetSetMgr.GetDatabaseEnumerator

 '' Get First Open Database
 Set oItem = oEnumDb.Next

 '' Step through the Databases
 Do While Not oItem Is Nothing

 '' Display Sheet Set File Name
 MsgBox oItem.GetDatabase.GetFileName

 '' Get Next Open Database
 Set oItem = oEnumDb.Next
 Loop
End Sub

Close – Allows you to close an open sheet set file.

CreateDatabase – Allows you to create a new sheet set file.

'' Create a new Sheet Set
Public Sub CreateSheetSet()
 '' Create a Reference to the Sheet Set Manager Object
 Dim oSheetSetMgr As AcSmSheetSetMgr
 Set oSheetSetMgr = New AcSmSheetSetMgr

 '' Open a Sheet Set file
 Dim oSheetDb As AcSmDatabase
 Set oSheetDb = oSheetSetMgr.CreateDatabase("C:\Documents and Settings\<user name>\My Documents\AutoCAD

Sheet Sets\CP15-1 AU2005.dst", "")

 '' Set the Name and Description for the Sheet Set
 oSheetDb.GetSheetSet().SetName "CP15-1"
 oSheetDb.GetSheetSet().SetDesc "AU2005 Sheet Set Object Demo for CP15-1"

 '' Return the Sheet Set Name and Description
 MsgBox "Sheet Set Name: " & oSheetDb.GetSheetSet().GetName & vbCrLf + _
 "Sheet Set Description: " & oSheetDb.GetSheetSet().GetDesc

 '' Close the Sheet Set
 oSheetSetMgr.Close oSheetDb
End Sub

 CP15-1: Taking a Look at the Sheet Set Object

 4

The above example of CreateDatabase causes an error to occur and this is due to the Sheet Set not being checked out or
locked when updating the Name and Description. Since the Sheet Set can be accessed by multiple users at a single time, the
Sheet Set Object supports a file locking mechanism. So before you are allowed to add or make changes to the Sheet Set file,
you first must lock the Sheet Set database. The methods for doing this care LockDb and UnlockDb; which are used to lock and
unlock the Sheet Set file respectfully.

LockDb – Used to lock the Sheet Set database before making any updates.

UnlockDb – Used to unlock the Sheet Set database after you have made the updates.

To make things easier and to make sure you have permission in the first place to check out the Sheet Set database you use the
method GetLockStatus.

GetLockStatus – Used to determine the current lock status of the Sheet Set database. The method will return one of the
following constants:

AcSmLockStatus_UnLocked Write access is denied because the Sheet Set is not locked.
AcSmLockStatus_Locked_Local Write access is enabled and the Sheet Set is locked.
AcSmLockStatus_Locked_Remote Write access is denied because another user the Sheet Set locked.
AcSmLockStatus_Locked_ReadOnly Write access is denied because the Sheet Set is read-only.
AcSmLockStatus_Locked_AccessDenied Write access is denied due to lack of user rights.
AcSmLockStatus_Locked_NotConnected Write access is denied because the connection to the Sheet Set was lost.

Note: The top four constants are the most commonly encountered out of the six different possible status values.

Below are two custom functions that I use to lock and unlock the Sheet Set database before modifying any of the content.

'' Used to Lock the database (SheetSet)
Private Function LockDatabase(oSheetDb As AcSmDatabase) As Boolean

 '' Check the status of the database
 If oSheetDb.GetLockStatus = AcSmLockStatus_UnLocked Then
 oSheetDb.LockDb oSheetDb
 LockDatabase = True
 Else
 LockDatabase = False
 End If
End Function

'' Used to Unlock the database (SheetSet)
Private Function UnlockDatabase(oSheetDb As AcSmDatabase) As Boolean

 '' Check the status of the database
 If oSheetDb.GetLockStatus = AcSmLockStatus_Locked_Local Then
 oSheetDb.UnlockDb oSheetDb
 UnlockDatabase = True
 Else
 UnlockDatabase = False
 End If
End Function

To correct the problem with the CreateDatabase example; you would add the LockDatabase function before calling the
SetName and SetDesc methods, and add the UnlockDatabase function after updating the name and description.

 CP15-1: Taking a Look at the Sheet Set Object

 5

…
 '' Open a Sheet Set file
 Dim oSheetDb As AcSmDatabase
 Set oSheetDb = oSheetSetMgr.CreateDatabase("C:\Documents and Settings\<user name>\My Documents\AutoCAD

Sheet Sets\CP15-1 AU2005.dst", "")

 '' Lock the Database
 LockDatabase oSheetDb

 '' Set the Name and Description for the Sheet Set
 oSheetDb.GetSheetSet().SetName "CP15-1"
 oSheetDb.GetSheetSet().SetDesc "AU2005 Sheet Set Object Demo for CP15-1"

 '' Unlock the database
 UnlockDatabase oSheetDb

 '' Return the Sheet Set Name and Description
 MsgBox "Sheet Set Name: " & oSheetDb.GetSheetSet().GetName & vbCrLf + _
 "Sheet Set Description: " & oSheetDb.GetSheetSet().GetDesc
…

Other settings that can be set for a Sheet Set:

o Alternative Page Setup (SetAltPageSetups and GetAltPageSetups)

o Callout Blocks (SetCalloutBlocks and GetCalloutBlocks)

o Resource Drawings (SetResources and GetResources)

Adding Content to the Sheet Set File

Its great to be able to open a Sheet Set file or even create a new one from scratch, but the purpose of a Sheet Set is to help
organize a project. First we will start off by creating a Subset and then add some drawing files from there. A Subset can
represent a physical folder on a network or a local drive, or a virtual folder that can be used to just organize the layouts in the
Sheet Set. A Subset is represented by the object AcSmSubset in the Sheet Set Object.

A Subset has the following main properties:

o Name (SetName and GetName)

o Description (SetDesc and GetDesc)

o Prompt for Template (SetPromptForDWT and GetPromptForDWT)

o Storage Location for New Sheets (SetNewSheetLocation and GetNewSheetLocation)

o Default Template for New Sheets (SetDefDwtLayout and GetDefDwtLayout)

 CP15-1: Taking a Look at the Sheet Set Object

 6

The following procedure demonstrates how to create a new Subset and setup a majority of the necessary options for it.

'' Create a Subset in a Sheet Set
Private Function CreateSubset(oSheetDb As AcSmDatabase, _
 strName As String, _
 strDesc As String, _
 Optional strNewSheetLocation As String = "", _
 Optional strNewSheetDWTLocation As String = "", _
 Optional strNewSheetDWTLayout As String = "", _
 Optional bPromptForDWT As Boolean = False) As AcSmSubset

 '' Create a Subset with the provided name and description
 Set CreateSubset = oSheetDb.GetSheetSet().CreateSubset(strName, strDesc)

 '' Get the Folder the Sheet Set is Stored in
 Dim strSheetSetFldr As String
 strSheetSetFldr = Mid(oSheetDb.GetFileName, 1, InStrRev(oSheetDb.GetFileName, "\"))

 '' Create a reference to a File Reference object
 Dim oFileRef As IAcSmFileReference
 Set oFileRef = CreateSubset.GetNewSheetLocation

 '' Check to see if a path was provided, if not default to the Sheet Set location
 If strNewSheetLocation <> "" Then
 oFileRef.SetFileName strNewSheetLocation
 Else
 oFileRef.SetFileName strSheetSetFldr
 End If

 '' Set the new sheet location for the Subset
 CreateSubset.SetNewSheetLocation oFileRef

 '' Create a reference to a Layout Reference object
 Dim oLayoutRef As AcSmAcDbLayoutReference
 Set oLayoutRef = CreateSubset.GetDefDwtLayout

 '' Check to see that a default DWT Location was passed in
 If strNewSheetDWTLocation <> "" Then
 '' Set the location of the template in the Layout Reference object
 oLayoutRef.SetFileName strNewSheetDWTLocation

 '' Set the Layout name for the Layout Reference object
 oLayoutRef.SetName strNewSheetDWTLayout

 '' Set the Layout Reference to the Subset
 CreateSubset.SetDefDwtLayout oLayoutRef
 End If

 '' Set the Prompt for Template option of the Subset when a new Sheet is created
 CreateSubset.SetPromptForDwt bPromptForDWT
End Function

 CP15-1: Taking a Look at the Sheet Set Object

 7

Now that the base functionality for creating a Subset has been defined, it is time to expand the functionality of the
CreateSheetSet function.

…
 '' Lock the Database
 LockDatabase oSheetDb

 '' Set the Name and Description for the Sheet Set
 oSheetDb.GetSheetSet().SetName "CP15-1"
 oSheetDb.GetSheetSet().SetDesc "AU2005 Sheet Set Object Demo for CP15-1"

 '' Create a couple new Subsets
 Dim oSubset As AcSmSubset

 Set oSubset = CreateSubset(oSheetDb, "Plans", "Building Plans", "", _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1")

 Set oSubset = CreateSubset(oSheetDb, "Elevations", "Building Elevations", "", _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1")

 '' Unlock the database
 UnlockDatabase oSheetDb
…

Now that there are some Subsets in the Sheet Set, lets add some Sheets to it. You have already seen part of the functionality
that is required to add a Sheet. This functionality was shown in the creation of the Subset. Sheets can exist outside of a Subset
or as part of a Subset based on the level of organization desired. A Sheet in a Sheet Set is represented by the AcSmSheet
object.

A Sheet has the following main properties:

o Name (SetName and GetName)

o Description (SetDesc and GetDesc)

o Title (SetTitle and GetTitle)

o Number (SetNumber and GetNumber)

The following procedure demonstrates how to create a new Sheet in a Sheet Set or Subset based on the default template and
storage location.

'' Add a Sheet to the Sheet Set or Subset
'' This function is dependent on a Default Template and Storage location being setup for the Sheet Set of Subset
Private Function AddSheet(oComp As IAcSmComponent, _
 strTitle As String, _
 strDesc As String, _
 strNumber As String) As AcSmSheet

 '' Create a variable to hold a Subset
 Dim oSubset As AcSmSubset

 '' Add a new Sheet to the Sheet Set

 CP15-1: Taking a Look at the Sheet Set Object

 8

 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then
 Set oSubset = oComp

 '' Create a new Sheet based on the template and location defined by the Subset
 Set AddSheet = oSubset.AddNewSheet(strTitle, strDesc)
 Else

 '' Create a new Sheet based on the template and location defined by the Sheet Set
 Set AddSheet = oComp.GetDatabase().GetSheetSet().AddNewSheet(strTitle, strDesc)
 End If

 '' Add the Title to the Sheet
 AddSheet.SetTitle strTitle

 '' Add the Number to the Sheet
 AddSheet.SetNumber strNumber

 '' Add it as the first Sheet
 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then

 '' Add the Sheet to the Subset
 oSubset.InsertComponent AddSheet, Nothing ''oSubset.GetSheetEnumerator().Next
 Else

 '' Add the Sheet to the Root of the Sheet Set
 oComp.GetDatabase().GetSheetSet().InsertComponent AddSheet, Nothing ''

oComp.GetDatabase().GetSheetSet().GetSheetEnumerator().Next
 End If
End Function

The CreateSheetSet procedure currently doesn’t setup a default template and storage location, so to do this you will need to
define the correct values for these properties first. The process is very similar to the one that was outlined in the CreateSubset
procedure. The code for setting up the default template and storage location is shown in the procedure SetSheetSetDefaults,
and the code to add new Sheets to the Sheet Set are defined in the AddSheet procedure. To place the new Sheet in the Sheet
set you need to use the method InsertComponent or InsertComponentAfetr.

'' Setup the Sheet Set Defaults
Private Sub SetSheetSetDefaults(oSheetDb As AcSmDatabase, _
 strName As String, _
 strDesc As String, _
 Optional strNewSheetLocation As String = "", _
 Optional strNewSheetDWTLocation As String = "", _
 Optional strNewSheetDWTLayout As String = "", _
 Optional bPromptForDWT As Boolean = False)

 '' Set the Name and Description for the Sheet Set
 oSheetDb.GetSheetSet().SetName strName
 oSheetDb.GetSheetSet().SetDesc strDesc

 '' Check to see if a Storage Location was provided
 If strNewSheetLocation <> "" Then
 '' Get the Folder the Sheet Set is Stored in
 Dim strSheetSetFldr As String
 strSheetSetFldr = Mid(oSheetDb.GetFileName, 1, InStrRev(oSheetDb.GetFileName, "\"))

 CP15-1: Taking a Look at the Sheet Set Object

 9

 '' Create a reference to a File Reference object
 Dim oFileRef As IAcSmFileReference
 Set oFileRef = oSheetDb.GetSheetSet().GetNewSheetLocation

 '' Set the default storage location based on the Sheet Sets location
 oFileRef.SetFileName strSheetSetFldr

 '' Set the new Sheet location for the Sheet Set
 oSheetDb.GetSheetSet().SetNewSheetLocation oFileRef
 End If

 '' Check to see if a Template was provided
 If strNewSheetDWTLocation <> "" Then
 '' Add Default Template to Sheet Set
 Dim oLayoutRef As AcSmAcDbLayoutReference
 Set oLayoutRef = oSheetDb.GetSheetSet().GetDefDwtLayout

 '' Set the location of the template in the Layout Reference object
 oLayoutRef.SetFileName strNewSheetDWTLocation

 '' Set the Layout name for the Layout Reference object
 oLayoutRef.SetName strNewSheetDWTLayout

 '' Set the Layout Reference to the Subset
 oSheetDb.GetSheetSet().SetDefDwtLayout oLayoutRef
 End If

 '' Set the Prompt for Template option of the Subset when a new Sheet is created
 oSheetDb.GetSheetSet().SetPromptForDwt bPromptForDWT
End Sub

'' Add a Sheet to the Sheet Set or Subset
'' This function is dependent on a Default Template and Storage location being setup for the Sheet Set of Subset
Private Function AddSheet(oComp As IAcSmComponent, _
 strTitle As String, _
 strDesc As String, _
 strNumber As String) As AcSmSheet

 '' Create a variable to hold a Subset
 Dim oSubset As AcSmSubset

 '' Add a new Sheet to the Sheet Set
 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then
 Set oSubset = oComp

 '' Create a new Sheet based on the template and location defined by the Subset
 Set AddSheet = oSubset.AddNewSheet(strTitle, strDesc)
 Else

 '' Create a new Sheet based on the template and location defined by the Sheet Set
 Set AddSheet = oComp.GetDatabase().GetSheetSet().AddNewSheet(strTitle, strDesc)

 CP15-1: Taking a Look at the Sheet Set Object

 10

 End If

 '' Add the Title to the Sheet
 AddSheet.SetTitle strTitle

 '' Add the Number to the Sheet
 AddSheet.SetNumber strNumber

 '' Add it as the first Sheet
 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then

 '' Add the Sheet to the Subset
 oSubset.InsertComponent AddSheet, Nothing
 Else

 '' Add the Sheet to the Root of the Sheet Set
 oComp.GetDatabase().GetSheetSet().InsertComponent AddSheet, Nothing
 End If
End Function

Revised CreateSheetSet procedure that demonstrates how to use the CreateSheetSet procedure.

 …
 '' Lock the Database
 LockDatabase sheetdb

 '' Get the Folder the Sheet Set is Stored in
 Dim strSheetSetFldr As String
 strSheetSetFldr = Mid(oSheetDb.GetFileName, 1, InStrRev(oSheetDb.GetFileName, "\"))

 '' Setup the Sheet Set's default values
 SetSheetSetDefaults oSheetDb, "CP15-1", "AU2005 Sheet Set Object Demo for CP15-1", _
 strSheetSetFldr, _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1"

 '' Create a couple new Subsets
 Dim oSubset As AcSmSubset

 AddSheet oSheetDb, "Title Page", "Project Title Page", "T1"

 Set oSubset = CreateSubset(oSheetDb, "Plans", "Building Plans", "", _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1")

 AddSheet oSubset, "North Plan", "Northern section of building plan", "P1"

 Set oSubset = CreateSubset(oSheetDb, "Elevations", "Building Elevations", "", _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1")

'' Unlock the database
 UnlockDatabase oSheetDb
 …

 CP15-1: Taking a Look at the Sheet Set Object

 11

Just like it is possible to add new Sheets through the Sheet Set Manager, you can also import an existing layout into the Sheet
Set using the Sheet Set Object. The process of importing a Sheet versus adding a sheet isn’t much different. To import a Sheet
you using the ImportSheet method which works in a slightly different way from the AddSheet method. However, you can also
use the AddSheet method to import a Sheet too.

The following procedure demonstrates how to import an existing layout from a drawing into a Sheet Set.

'' Import a Sheet into the Sheet Set or Subset
Private Function ImportASheet(oComp As IAcSmComponent, _
 strTitle As String, _
 strDesc As String, _
 strNumber As String, _
 strFileName As String, _
 strLayout As String) As AcSmSheet

 '' Create a variable to hold a Subset and Sheet Set
 Dim oSubset As New AcSmSubset
 Dim oSheetSet As New AcSmDatabase

 '' Create a reference to a Layout Reference object
 Dim oLayoutRef As New AcSmAcDbLayoutReference
 oLayoutRef.InitNew oComp

 '' Add a new Sheet to the Sheet Set
 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then
 Set oSubset = oComp

 '' Create a new Sheet based on the template and location defined by the Subset
 oLayoutRef.SetFileName strFileName
 oLayoutRef.SetName strLayout

 Set ImportASheet = oSubset.ImportSheet(oLayoutRef)
 Else
 Set oSheetSet = oComp

 '' Create a new Sheet based on the template and location defined by the Sheet Set
 oLayoutRef.SetFileName strFileName
 oLayoutRef.SetName strLayout

 Set ImportASheet = oSheetSet.GetSheetSet().ImportSheet(oLayoutRef)
 End If

 '' Add the Name to the Sheet
 ImportASheet.SetName strTitle

 '' Add the Description to the Sheet
 ImportASheet.SetDesc strDesc

 '' Add the Title to the Sheet
 ImportASheet.SetTitle strTitle

 '' Add the Number to the Sheet

 CP15-1: Taking a Look at the Sheet Set Object

 12

 ImportASheet.SetNumber strNumber

 '' Add it as the first Sheet
 '' Check to see if the Component is a Subset or Sheet Set
 If oComp.GetTypeName = "AcSmSubset" Then

 '' Add the Sheet to the Subset
 oSubset.InsertComponent ImportASheet, Nothing
 Else

 '' Add the Sheet to the Root of the Sheet Set
 oSheetSet.GetSheetSet().InsertComponent ImportASheet, Nothing
 End If
End Function

Adding Sheet Set and Sheet Properties

Custom properties are a great way to ensure consistency among the values in title blocks for the project, as well as being able to
track project status. Custom properties come in two varieties, Sheet and Sheet Set. To create a custom property you need to
create a reference to what is know as a Custom Property Bag (AcSmCustomPropertyBag). The Custom Property Bag is used
as a container to hold any custom properties that are added to a Sheet or Sheet Set. Once you have a reference to the Custom
Property Bag you then need to create a reference to a Custom Property Value (AcSmCustomPropertyValue); which is the
object that is used to reference the object that is added to the Custom Property Bag.

A flag for the Custom Property Value is used to determine if it is a property at the Sheet or Sheet Set level. The value used to
refer to a Sheet property is CUSTOM_SHEET_PROP and the value used to refer to a Sheet Set value is
CUSTOM_SHEETSET_PROP. The following procedure demonstrates how to create a reference to the Custom Property Bag
and add a new property to it.

Note: It is best to create your properties first before adding any Sheets programmatically, otherwise you will need to step through
each Sheet in the Sheet Set and add the property to each one manually. Not that hard to do as you will see in a little while, but if
it can be avoided; your program will run more efficiently.

'' Set/Create a Sheet Set Property
Private Sub SetCustomProperty(oSheetDb As AcSmDatabase, _
 strName As String, _
 strValue As Variant, _
 Optional bSheetSetFlag As Boolean = True)

 '' Create a Reference to the Custom Property Bag
 Dim cBag As AcSmCustomPropertyBag
 Set cBag = oSheetDb.GetSheetSet().GetCustomPropertyBag

 '' Create a Reference to a Custom Property Value
 Dim cBagVal As New AcSmCustomPropertyValue
 cBagVal.InitNew oSheetDb.GetSheetSet() '' cBag

 '' Set the Flag for Sheet Set or Sheet Property
 If bSheetSetFlag = True Then
 cBagVal.SetFlags CUSTOM_SHEETSET_PROP
 Else
 cBagVal.SetFlags CUSTOM_SHEET_PROP
 End If

 '' Set the value for the Bag

 CP15-1: Taking a Look at the Sheet Set Object

 13

 cBagVal.SetValue strValue

 '' Create the property
 cBag.SetProperty strName, cBagVal

 '' Cleat variable
 Set cBagVal = Nothing
End Sub

A portion of the revised CreateSheetSet procedure demonstrating how to use the SetCustomPropety procedure.

 …
 '' Setup the Sheet Set's default values
 SetSheetSetDefaults oSheetDb, "CP15-1", "AU2005 Sheet Set Object Demo for CP15-1", _
 strSheetSetFldr, _
 "C:\Documents and Settings\<user name>\My Documents\AutoCAD Sheet Sets\CP15-1.dwt", _
 "Layout1"

 '' Create a Sheet Set Property
 SetCustomProperty oSheetDb, "Project Approved By", "AU05"

 '' Create a Sheet Property
 SetCustomProperty oSheetDb, "Checked By", "LAA", False
 SetCustomProperty oSheetDb, "Complete Percentage", "0%", False

 '' Create a couple new Subsets
 Dim oSubset As AcSmSubset
 …

As previously mentioned, if you create a new Sheet property for existing Sheets you become responsible for it. To add the
property to all the Sheets in the Sheet Set you need to step through each of the Sheets using a loop. To get all the objects that
are contained in the Sheet Set you use the GetEnumerator method and then use the GetTypeName method to determine
which type of object it is you are returned. The following procedure demonstrates how to step through all the properties
associated with a Sheet Set and make sure the ones that are flagged as a Sheet property is added to each Sheet in the Sheet
Set.

'' Synchronize Sheets with Sheet Properties
Private Sub SyncSheetProperties()
 '' Create a Reference to the Sheet Set Manager Object
 Dim oSheetSetMgr As AcSmSheetSetMgr
 Set oSheetSetMgr = New AcSmSheetSetMgr

 '' Get the current Sheet Set
 Dim oSheetDb As AcSmDatabase
 Set oSheetDb = oSheetSetMgr.GetDatabaseEnumerator().Next

 '' Lock the Database
 If LockDatabase(oSheetDb) Then

 '' Get the objects in the Sheet Set
 Dim oEnum As IAcSmEnumPersist
 Set oEnum = oSheetDb.GetEnumerator

 '' Get the first object in the Enumerator

 CP15-1: Taking a Look at the Sheet Set Object

 14

 Dim oItem As IAcSmPersist
 Set oItem = oEnum.Next

 '' Step through all the objects in the Sheet Set
 Do While Not oItem Is Nothing

 '' Check to see if the object is a Sheet
 If oItem.GetTypeName = "AcSmSheet" Then
 Dim oSheet As AcSmSheet
 Set oSheet = oItem

 '' Create a reference to the Property Enumerator for the Custom Property Bag
 Dim oEnumProp As IAcSmEnumProperty
 Set oEnumProp = oSheet.GetDatabase().GetSheetSet().GetCustomPropertyBag().GetPropertyEnumerator

 '' Get the values from the Sheet Set to populate to the Sheets
 Dim strName As String
 Dim oPropVal As AcSmCustomPropertyValue

 '' Get the first property
 oEnumProp.Next strName, oPropVal

 '' Step through each of the properties
 Do While Not oPropVal Is Nothing
 '' Check to see if the Property is for a Sheet and if so continue
 If oPropVal.GetFlags() = CUSTOM_SHEET_PROP Then

 '' Create a reference to the Custom Property Bag
 Dim cBag As AcSmCustomPropertyBag
 Dim cBagVal As New AcSmCustomPropertyValue

 '' Create a reference to the Cystom Property Value
 Set cBag = oSheet.GetCustomPropertyBag

 '' Create a new Custom Property Value
 cBagVal.InitNew cBag

 '' Set the Property Flag to a Sheet Property
 cBagVal.SetFlags CUSTOM_SHEET_PROP

 '' Set the Value for the Property
 cBagVal.SetValue oPropVal.GetValue

 '' Set the Name for the Property
 cBag.SetProperty strName, cBagVal

 Set cBagVal = Nothing
 End If

 '' Get the next Property
 oEnumProp.Next strName, oPropVal
 Loop
 End If

 '' Get the next Sheet
 Set oItem = oEnum.Next

 CP15-1: Taking a Look at the Sheet Set Object

 15

 Loop

 '' Unlock the database
 UnlockDatabase oSheetDb
 Else
 MsgBox "Unable to access """ & sheetdb.GetSheetSet().GetName & """ Sheet Set."
 End If
End Sub

Working with Sheet Set Events

With the lack of documentation that comes with the Sheet Set Object, it is rather a little difficult to work efficiently with events for
the Sheet Set Object. Events for the Sheet Set Object don’t work like they do with the AutoCAD ActiveX (COM) API, or for that
matter many of the other APIs that are commonly used with VBA . You need to register and unregister the events yourself,
which can make it hard to understand and implement. There is a single event handler which is designed to return a number of
different constant values. Below is an overview of a custom class that implements the events for the Sheet Set Object and two
procedures used to enable and disable the event handler.

'' Begin clsEventHandler module (Class module)
Implements IAcSmEvents

'' Custom Class to handle Events for the Sheet Set Object
Private Sub IAcSmEvents_OnChanged(ByVal ev As AcSmEvent, ByVal comp As IAcSmPersist)
 Dim oSheet As AcSmSheet
 Dim oSubset As AcSmSubset

 If ev = ACSM_DATABASE_OPENED Then
 ThisDrawing.Utility.Prompt vbLf & comp.GetDatabase.GetFileName & " was opened."
 ElseIf ev = ACSM_DATABASE_CHANGED Then
 ThisDrawing.Utility.Prompt vbLf & "database changed"
 ElseIf ev = SHEET_DELETED Then
 Set oSheet = comp
 ThisDrawing.Utility.Prompt vbLf & oSheet.GetName & " was deleted"
 ElseIf ev = SHEET_SUBSET_CREATED Then
 Set oSubset = comp
 ThisDrawing.Utility.Prompt vbLf & oSubset.GetName & " was created"
 ElseIf ev = SHEET_SUBSET_DELETED Then
 Set oSubset = comp
 ThisDrawing.Utility.Prompt vbLf & oSubset.GetName & " was deleted"
 End If
End Sub

'' Begin basEventsSample module
Option Explicit
Dim oSheetSetMgr As IAcSmSheetSetMgr
Dim oSheetDb As IAcSmDatabase
Dim oSheetSet As IAcSmSheetSet

Dim eHndlr As clsEventHandler
Dim eSSMCookie As Long
Dim eDbCookie As Long
Dim eSSetCookie As Long

 CP15-1: Taking a Look at the Sheet Set Object

 16

'' Test procedure for working with Events
Public Sub TestEvents()
 '' Create a reference to the custom EventHandler Class
 Set eHndlr = New clsEventHandler

 '' Create a Reference to the Sheet Set Manager Object
 Set oSheetSetMgr = New AcSmSheetSetMgr

 '' Open a Sheet Set file
 Set oSheetDb = oSheetSetMgr.FindOpenDatabase("C:\Program Files\AutoCAD 2006\Sample\Sheet

Sets\Architectural\IRD Addition.dst")

 '' Register the event handlers
 eSSMCookie = oSheetSetMgr.Register(eHndlr)
 eDbCookie = oSheetDb.Register(eHndlr)

 Set oSheetSet = oSheetDb.GetSheetSet
 eSSetCookie = oSheetSet.Register(eHndlr)
End Sub

'' Unregister Events
Public Sub EndTestEvents()
 oSheetSetMgr.Unregister eSSMCookie
 oSheetDb.Unregister eDbCookie
 oSheetSet.Unregister eSSetCookie

 Set eHndlr = Nothing
End Sub

Additional Custom Procedures

The following procedure demonstrates how to step through and count up all of the Sheets found in a Sheet Set, and create a
custom Sheet Set property that will hold the total number of sheets.

'' Counts up the Sheets for all the Open Sheet Sets
Public Sub SetSheetCount()
 Dim nSheetCount As Integer

 Dim oEnumDb As IAcSmEnumDatabase
 Dim oItem As IAcSmPersist

 '' Create a Reference to the Sheet Set Manager Object
 Dim oSheetSetMgr As AcSmSheetSetMgr
 Set oSheetSetMgr = New AcSmSheetSetMgr

 Set oEnumDb = oSheetSetMgr.GetDatabaseEnumerator
 Set oItem = oEnumDb.Next

 Dim oSheetDb As AcSmDatabase

 Do While Not oItem Is Nothing
 Set oSheetDb = oItem

 '' Lock the Database
 If LockDatabase(oSheetDb) Then

 CP15-1: Taking a Look at the Sheet Set Object

 17

 On Error Resume Next

 Dim oEnum As IAcSmEnumPersist
 Dim oItemSh As IAcSmPersist

 '' Get the Enumerator for the objects in the Sheet Set
 Set oEnum = oSheetDb.GetEnumerator
 Set oItemSh = oEnum.Next

 '' Step through the objects in the Sheet Set
 Do While Not oItemSh Is Nothing
 '' Increment the counter of the object is a Sheet
 If oItemSh.GetTypeName = "AcSmSheet" Then
 nSheetCount = nSheetCount + 1
 End If

 '' Get next object
 Set oItemSh = oEnum.Next
 Loop

 '' Apply the Sheet Count as a custom property
 Dim cBag As AcSmCustomPropertyBag
 Dim cBagVal As New AcSmCustomPropertyValue

 Set cBag = oSheetDb.GetSheetSet().GetCustomPropertyBag

 cBagVal.InitNew cBag

 cBagVal.SetFlags CUSTOM_SHEETSET_PROP
 cBagVal.SetValue CStr(nSheetCount)

 cBag.SetProperty "Total Sheets", cBagVal

 Set cBagVal = Nothing

 '' Unlock the database
 UnlockDatabase oSheetDb

 '' Clear and check for next SheetSet that is open
 nSheetCount = 0
 Else
 MsgBox "Unable to access """ & sheetdb.GetSheetSet().GetName & """ Sheet Set."
 End If

 Set oItem = oEnumDb.Next
 Loop
End Sub

